Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
1.
J Diabetes Res ; 2024: 4873544, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577302

RESUMO

The production of nanoparticles enhances the bioactivity of biological molecules for drug delivery to diseased sites. This study explains how silver nanoparticle (AgNP) coating enhanced the protection effects of vanillic acid in male diabetic rats with streptozotocin- (STZ-) induced diabetes. Twenty-four rats were divided into four groups (n = 6) for this investigation. The first group (G1) is untreated, whereas diabetes was induced in the other three groups through STZ injection. Diabetic rats that were not getting therapy were included in the second group (G2, STZ-positive), whereas the other diabetic rats were divided into the third group (G3, vanillic acid-treated) and the fourth group (G4, vanillic acid-coated AgNPs treated). The treatment lasted four weeks. In G2, the induction of diabetes significantly (at P = 0.05) increased in serum glucose, glycated proteins, renal indices, interleukin-6 (IL-6), K+, immunoglobulins, and lipid peroxidation, while decreased Ca++, Na+, and other antioxidants in the kidney tissue homogenate. In addition, pathological altered signs were present in the pancreas and kidneys of diabetic rats. The renal and pancreatic tissues were effectively enhanced by vanillic acid or vanillic acid-coated AgNPs, bringing them very close to their prediabetic conditions. Vanillic acid-coated AgNPs offered a stronger defense against STZ-induced diabetes and lessened the effects of hyperglycemia compared to ordinary vanillic acid. Additionally, using vanillic acid coated with silver nanoparticles greatly increased the antioxidant and antidiabetic activity and reduced inflammation when compared to using vanillic acid alone.


Assuntos
Diabetes Mellitus Experimental , Nanopartículas Metálicas , Ratos , Masculino , Animais , Estreptozocina/farmacologia , Ácido Vanílico/farmacologia , Ácido Vanílico/uso terapêutico , Prata/farmacologia , Prata/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Antioxidantes/uso terapêutico , Estresse Oxidativo
2.
Bioorg Chem ; 145: 107254, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432152

RESUMO

Vanillic acid (VA) - a naturally occurring phenolic compound in plants - is not only used as a flavoring agent but also a prominent metabolite post tea consumption. VA and its associated compounds are believed to play a significant role in preventing diseases, underscoring the need for a systematic investigation. Herein, we report a 4-step synthesis employing the classical organic reactions, such as Willamson's alkylation, Fischer-Spier reaction, and Steglich esterification, complemented with a protection-deprotection strategy to prepare 46 VA derivatives across the five series (1a-1i, 2a-2i, 3, 3a-3i, 4a-4i, 5a-5i) in high yields. The synthesized compounds were investigated for their antifungal, anti-inflammatory, and toxic effects. Notably, compound 1a demonstrated remarkable ROS inhibition with an IC50 value of 5.1 ± 0.7 µg/mL, which is more than twice as effective as the standard ibuprofen drug. A subset of the synthesized derivatives (2b, 2c, 2e, 3b-3d, 4a-4c, 5a, and 5e) manifested their antifungal effect against drug-resistant Candida strains. Compound 5g, in particular, revealed synergism with the established antifungal drugs amphotericin B (AMB) and fluconazole (FLZ), doubling FLZ's potency against azole resistant Candida albican ATCC 36082. Furthermore, 5g improved the potency of these antifungals against FLZ-sensitive strains, including C. glabrata ATCC 2001 and C. parapsilosis ATCC 22019, as well as various multidrug-resistant (MDR) Candida strains, namely C. albicans ATCC 14053, C. albicans CL1, and C. krusei SH2L OM341600. Additionally, pharmacodynamics of compound 5g was examined using time-kill assay, and a benign safety profile was observed with no hemolytic activity in whole blood, and no cytotoxicity towards the normal BJ human cell line. The synergistic potential of 5g was further investigated through both experimental methods and docking simulations.These findings highlight the therapeutic potential of VA derivatives, particularly in addressing inflammation and circumventing FLZ resistance in Candida albicans.


Assuntos
Antifúngicos , Micoses , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Ácido Vanílico/farmacologia , Ácido Vanílico/uso terapêutico , Azóis/farmacologia , Testes de Sensibilidade Microbiana , Micoses/tratamento farmacológico , Fluconazol/farmacologia , Candida , Candida albicans , Candida glabrata , Inflamação/tratamento farmacológico
3.
Phytother Res ; 38(3): 1262-1277, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38185917

RESUMO

Hippocampal synaptic dysfunction, oxidative stress, neuroinflammation, and neuronal loss play critical roles in the pathophysiology of diabetes-associated cognitive decline (DACD). The study aimed to investigate the effects of vanillic acid (VA), a phenolic compound, against DACD and explore the potential underlying mechanisms. Following confirmation of diabetes, rats were treated with VA (50 mg/kg/day; P.O.) or insulin (6 IU/rat/day; S.C.) for 8 consecutive weeks. The cognitive performance of the rats was evaluated using passive-avoidance and water-maze tasks. Long-term potentiation (LTP) was induced at hippocampal dentate gyrus (DG) synapses in response to high-frequency stimulation (HFS) applied to the perforant pathway (PP) to evaluate synaptic plasticity. Oxidative stress factors, inflammatory markers, and histological changes were evaluated in the rat hippocampus. This study showed that streptozotocin (STZ)-induced diabetes caused cognitive decline that was associated with inhibition of LTP induction, suppression of enzymatic antioxidant activities, enhanced lipid peroxidation, elevated levels of inflammatory proteins, and neuronal loss. Interestingly, chronic treatment with VA alleviated blood glucose levels, improved cognitive decline, ameliorated LTP impairment, modulated oxidative-antioxidative status, inhibited inflammatory response, and prevented neuronal loss in diabetic rats at a level comparable to insulin therapy. The results suggest that the antihyperglycemic, antioxidative, anti-inflammatory, and neuroplastic properties of VA may be the mechanisms behind its neuroprotective effect against DACD.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Experimental , Fármacos Neuroprotetores , Ratos , Animais , Diabetes Mellitus Experimental/complicações , Fármacos Neuroprotetores/farmacologia , Ácido Vanílico/farmacologia , Ratos Wistar , Hipocampo , Antioxidantes/farmacologia , Plasticidade Neuronal , Disfunção Cognitiva/patologia , Insulina
4.
Life Sci ; 334: 122190, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37866805

RESUMO

BACKGROUND: The search for alternative therapies for treatment of Benign prostatic hyperplasia (BPH) has been increasingly studied to avoid the common adverse effects of the usual regimens. Therefore, this study aimed at delineating possible mechanisms of benign prostatic hyperplasia (BPH) and possible therapeutic role of zinc oxide nanoparticles (ZnO-NPs) versus vanillic acid. METHODS: Forty rats were divided into five groups: control, sham control, Testosterone-induced BPH, BPH and Zn-NPs, and BPH and vanillic acid. Light microscopic, immune-histochemical; PCNA, Bcl-2, Bax, caspase-3, p-Akt and p-mTOR, histomorphometric analysis, MDA/SOD and GPx and were done. Gene expression of p-Akt, p-mTOR and survivin were evaluated. RESULTS: Application of zinc oxide nanoparticles as well as vanillic acid significantly reduced prostatic index, epithelial thickness, stromal collagen fibers, expression of PCNA, Bcl2, p-Akt, p-mTOR and MDA tissue level (p < 0.05). Whereas expression of Bax and caspase 3, and tissue levels of SOD and GPx were significantly increased in groups treated with Zno-Nps and vanillic acid compared to that of BPH group. Zinc oxide nanoparticles showed a better effect than vanillic acid in alleviating BPH. CONCLUSION: These findings suggested that ZnO-NPs as well as VA ameliorated the histolo-pathological and biochemical effects of induced BPH, moreover they improved the proapoptotic and antioxidant parameters which ere induced in BPH. It is recommended to search for new agents to prevent the development and progression of BPH.


Assuntos
Nanopartículas , Hiperplasia Prostática , Óxido de Zinco , Masculino , Humanos , Ratos , Animais , Testosterona/metabolismo , Hiperplasia Prostática/induzido quimicamente , Hiperplasia Prostática/tratamento farmacológico , Hiperplasia Prostática/metabolismo , Óxido de Zinco/uso terapêutico , Ácido Vanílico/farmacologia , Ácido Vanílico/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Proteína X Associada a bcl-2 , Antígeno Nuclear de Célula em Proliferação , Serina-Treonina Quinases TOR , Superóxido Dismutase
5.
Biomed Pharmacother ; 168: 115673, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37857251

RESUMO

MIF/CD74 signaling pathway and autophagy may be closely related to liver fibrosis. Vanillic acid (VA) is likely to have an anti-liver fibrosis effect, although related studies have not been reported. The aim of this study was to verify the role of hepatic stellate cells (HSCs) autophagy and the MIF/CD74 signaling pathway in the pathogenesis of liver fibrosis, and to investigate the effect of VA on liver fibrosis through in vivo and in vitro experiments. Our results showed that VA significantly attenuated CCl4-induced liver fibrosis. The alleviation of liver fibrosis with VA treatment was associated with a reduction of MIF, CD74, α-SMA, LC3B and Collagen 1. In addition, VA, MIF inhibitor (ISO-1) and autophagy inhibitor (3-MA) markedly inhibited the proliferation and migration of HSCs. This study indicates that VA could protect against HSCs activation, proliferation and migration by inhibiting the autophagy in HSCs via the MIF/CD74 signaling pathway so that alleviates liver fibrosis.


Assuntos
Células Estreladas do Fígado , Fatores Inibidores da Migração de Macrófagos , Humanos , Células Estreladas do Fígado/metabolismo , Ácido Vanílico/farmacologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Transdução de Sinais , Autofagia , Fígado , Fatores Inibidores da Migração de Macrófagos/metabolismo , Oxirredutases Intramoleculares/metabolismo
6.
Tissue Cell ; 84: 102161, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37478646

RESUMO

Although cisplatin (CDDP) is an effective anticancer agent, the ovotoxicity that can occur in female patients limits its use. Oxidative stress (OS) and inflammation are known to contribute to CDDP-induced ovotoxicity. Vanillic acid (VA) is a dietary herbal secondary metabolite with high free radical scavenging activity. It was aimed to evaluate the therapeutic effects of VA against CDDP-induced ovotoxicity in rats in this study for the first time. Ovotoxicity was achieved with a single dose of CDDP (5 mg/kg) in female rats. The therapeutic effect of VA was evaluated with 3-day administration of two different doses (5 and 10 mg/kg). While OS, inflammation, endoplasmic reticulum stress (ERS) and apoptosis markers were measured in tissue samples, the levels of reproductive hormones were determined in serum samples using colorimetric methods. The results showed that CDDP-induced nuclear factor erythroid 2-associated factor 2 (Nrf2) inhibition combined with increased OS, inflammation, ERS and apoptosis increased ovarian damage. VA treatments reversed these changes via activating Nrf2 pathway dose-dependently. In addition, histopathological findings also supported the biochemical results. VA may be a good therapeutic molecule candidate for CDDP-induced ovarian damage due to strong antioxidant and Nrf2 activator properties.


Assuntos
Antineoplásicos , Cisplatino , Feminino , Ratos , Animais , Cisplatino/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Vanílico/farmacologia , Antineoplásicos/toxicidade , Estresse Oxidativo , Inflamação/induzido quimicamente , Apoptose
7.
Bioresour Technol ; 385: 129416, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37390932

RESUMO

Aromatic acids play a selective role in the separation of hemicellulose. Phenolic acids have demonstrated an inhibitory effect on lignin condensation. In the current study, vanillic acid (VA), which combines the characteristics of aromatic and phenolic acids, is used to separate eucalyptus. The efficient and selective separation of hemicellulose is achieved simultaneously at 170 °C, 8.0% VA concentration, and 80 min. The separation yield of xylose increased from 78.80% to 88.59% compared to acetic acid (AA) pretreatment. The separation yield of lignin decreased from 19.32% to 11.19%. In particular, the ß-O-4 content of lignin increased by 5.78% after pretreatment. The results indicate that VA, as a "carbon positive ion scavenger", it preferentially reacts with the carbon-positive ion intermediate of lignin. Surprisingly, the inhibition of lignin condensation is achieved. This study provides a new starting point for the development of an efficient and sustainable commercial technology by organic acid pretreatment.


Assuntos
Lignina , Ácido Vanílico , Ácido Vanílico/farmacologia , Polissacarídeos , Carbono , Hidrólise
8.
Carbohydr Res ; 530: 108862, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37327765

RESUMO

Leishmaniasis is caused by infection with the protozoan parasites Leishmania. It is classified as one of the most significant neglected tropical diseases. It remains a significant global public health concern. Current treatments include the use of pentavalent antimonial, amphotericin B, pentamidine, miltefosine, and paromomycin. However, several limitations such as toxicity, side effect, and resistance to these drugs of certain species are of concern. To combat this disease, effective chemotherapy is urgently required for its treatment and management. In this study, we synthesized a series of carbohydrate-coumarin/vanillic acid hybrids linked through triazole moiety via CuACC (Copper-catalysed azide-alkyne cycloaddition) reaction. These compounds were evaluated for their in vitro antiparasitic activity using MTT assay against Leishmania donovani whereas, all compounds show IC50 value in the range of 65-74 µM.


Assuntos
Antiprotozoários , Leishmania donovani , Antiprotozoários/farmacologia , Antiparasitários/farmacologia , Antiparasitários/uso terapêutico , Ácido Vanílico/farmacologia , Cumarínicos/farmacologia , Carboidratos/farmacologia
9.
Nutrients ; 15(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37242140

RESUMO

Vanillic acid (VA) has shown antioxidant and anti-inflammatory activities in different cell types, but its biological effects in the context of early embryo development have not yet been clarified. In the current study, the impact of VA supplementation during in vitro maturation (IVM) and/or post-fertilization (in vitro culture; IVC) on redox homeostasis, mitochondrial function, AKT signaling, developmental competence, and the quality of bovine pre-implantation embryos was investigated. The results showed that dual exposure to VA during IVM and late embryo culture (IVC3) significantly improved the blastocyst development rate, reduced oxidative stress, and promoted fatty acid oxidation as well as mitochondrial activity. Additionally, the total numbers of cells and trophectoderm cells per blastocyst were higher in the VA-treated group compared to control (p < 0.05). The RT-qPCR results showed down-regulation of the mRNA of the apoptosis-specific markers and up-regulation of AKT2 and the redox homeostasis-related gene TXN in the treated group. Additionally, the immunofluorescence analysis showed high levels of pAKT-Ser473 and the fatty acid metabolism marker CPT1A in embryos developed following VA treatment. In conclusion, the study reports, for the first time, the embryotrophic effects of VA, and the potential linkage to AKT signaling pathway that could be used as an efficacious protocol in assisted reproductive technologies (ART) to improve human fertility.


Assuntos
Técnicas de Maturação in Vitro de Oócitos , Oócitos , Animais , Bovinos , Humanos , Oócitos/metabolismo , Técnicas de Maturação in Vitro de Oócitos/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ácido Vanílico/farmacologia , Estresse Oxidativo , Desenvolvimento Embrionário , Transdução de Sinais , Ácidos Graxos/metabolismo
10.
Biochem Pharmacol ; 213: 115618, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37211172

RESUMO

The host stimulator of interferon genes (STING) signaling pathway is a major innate immune sensing pathway, and the stimulation of this pathway within antigen-presenting cells shows promise in targeting immune-suppressed tumors. Macrophages resident in tumors exhibit anti-inflammatory properties and enhance tumor growth and development. Polarizing such macrophages towards a pro-inflammatory phenotype is an effective strategy for tumor suppression. In the present study, we observed that the STING pathway was inactivated in breast and lung carcinomas, and a positive correlation existed between STING and macrophage markers in these tumors. We found that vanillic acid (VA) could stimulate the STING/TBK1/IRF3 pathway. VA mediated the production of type I IFN and promoted macrophage polarization into the M1 phenotype; this activity was dependent on STING activation. A direct-contact co-culture model and a transwell co-culture model revealed that macrophages with VA-induced STING activation exhibited anti-proliferative effects on SKBR3 and H1299 cells, although a STING antagonist and M2 macrophage-related cytokines alleviated this anti-proliferative effect. Further investigation indicated that phagocytosis and apoptosis-inducing effects were the major mediators of the anti-tumor effect of VA-treated macrophages. Mechanistically, VA promoted the polarization of macrophages to a M1 phenotype via IL-6R/JAK signaling, resulting in enhanced phagocytosis and apoptosis-induction effects. Additionally, STING activation-induced IFNß production also participated in the apoptosis mediated by VA-treated macrophage in SKBR3 and H1299 cells. Mouse models with 4 T1 tumors confirmed the anti-tumor properties of VA in vivo and revealed the infiltration of VA-induced cytotoxic T cells into the tumors. These data suggest that VA is an effective agonist of STING and provides a new perspective for cancer immunotherapy.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/metabolismo , Neoplasias Pulmonares/metabolismo , Macrófagos , Fagocitose , Ácido Vanílico/farmacologia , Ácido Vanílico/uso terapêutico , Ácido Vanílico/metabolismo , Humanos
11.
BMC Pharmacol Toxicol ; 24(1): 33, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208773

RESUMO

BACKGROUND: Methamphetamine is widely abused in all parts of the world. It has been reported that short-term and long-term methamphetamine exposure could damage the dopaminergic system and induce cardiomyopathy and cardiotoxicity via mitochondrial dysfunction and oxidative stress. Vanillic acid (VA), a phenolic acid compound derived from plants, is known for its antioxidant and mitochondrial protection properties. METHODS: In the current study we used VA for attenuating of Methamphetamine-induced mitochondrial toxicity in cardiac mitochondria. Isolated mitochondria obtained from rat heart were grouped as: control, methamphetamine (250 µM), VA (10, 50 and 100 µM) was cotreated with methamphetamine (250 µM) and VA (100 µM) alone. After 60 min, mitochondrial fraction including: succinate dehydrogenases (SDH) activity, mitochondrial membrane potential (MMP), mitochondrial swelling, mitochondrial glutathione (GSH), reactive oxygen species (ROS) and lipid peroxidation (LPO) were evaluated. RESULTS: Methamphetamine exposure significantly disrupted mitochondrial function and induced ROS formation, lipid peroxidation, GSH depletion, MMP collapse and mitochondrial swelling, while VA significantly increased SDH activity as indicator of mitochondrial toxicity and dysfunction. VA also significantly decreased ROS formation, lipid peroxidation, mitochondrial swelling, MMP collapse and depletion of GSH in cardiac mitochondria in the presence of methamphetamine. CONCLUSION: These findings suggested that VA is able to reduce methamphetamine-induced mitochondrial dysfunction and oxidative stress. Our results demonstrate that VA could potentially serve as a promising and accessible cardioprotective agent against methamphetamine-induced cardiotoxicity, via antioxidant and mitochondrial protection properties.


Assuntos
Antioxidantes , Metanfetamina , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Metanfetamina/toxicidade , Metanfetamina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Vanílico/farmacologia , Ácido Vanílico/metabolismo , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Estresse Oxidativo , Mitocôndrias/metabolismo , Glutationa/metabolismo , Peroxidação de Lipídeos , Potencial da Membrana Mitocondrial
12.
Int Immunopharmacol ; 118: 110112, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37030116

RESUMO

Compounds derived from herbs exhibit a range of biological properties, including anti-inflammatory, antioxidant, and neuroprotective properties. However, the exact mechanism of action of these compounds in various neurological disorders is not fully discovered yet. Herein, the present work detected the effect of Vanillic acid (VA), a widely-used flavoring agent derived from vanillin, on autistic-like behaviors to assess the probable underlying mechanisms that mediate behavioral, electrophysiological, molecular, and histopathological alterations in the rat model of maternal separation (MS) stress. Maternal separated rats were treated with VA (25, 50, and 100 mg/kg interperitoneally for 14 days). In addition, anxiety-like, autistic-like behaviors, and learning and memory impairment were evaluated using various behavioral tests. Hippocampus samples were assessed histopathologically by H&E staining. Levels of malondialdehyde (MDA) and antioxidant capacity (by the FRAP method), as well as nitrite levels, were measured in brain tissue. Moreover, gene expression of inflammatory markers (IL-1ß, TLR-4, TNF-α, and NLRP3) was evaluated in the hippocampus. Electrophysiological alterations were also estimated in the hippocampus by long-term potentiation (LTP) assessments. Results showed that VA reversed the negative effects of MS on behavior. VA increased the diameter and decreased the percentage of dark neurons in the CA3 area. Accordingly, VA decreased MDA and nitrite levels and increased the antioxidant capacity in brain samples and decreased the expression of all inflammatory genes. VA treated rats showed significant improvements in all LTP parameters. This study provided evidence suggesting a possible role for VA in preventing autism spectrum disorder (ASD) by regulating immune signaling.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Ácido Vanílico/farmacologia , Ácido Vanílico/uso terapêutico , Transtorno Autístico/tratamento farmacológico , Transtorno do Espectro Autista/tratamento farmacológico , Privação Materna , Nitritos , Modelos Animais de Doenças
13.
J Gerontol A Biol Sci Med Sci ; 78(7): 1100-1107, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-36941756

RESUMO

Aging is the root cause of several pathologies like neurological and cardiovascular diseases. Identifying compounds that improve health span and extend life span, called geroprotectors, could be crucial to preventing or at least delaying the onset of age-related diseases. In this regard, the nematode Caenorhabditis elegans (C. elegans) is emerging as an easy, efficient, low-cost model system to screen natural products and identify novel geroprotectors. Phenolic acids can be found in a wide range of natural products that are part of the human diet. Vanillic acid (VA) is a phenolic acid that has previously been attributed with antioxidant, anti-inflammatory, and neuroprotective features. To determine whether these beneficial health effects amount to an extension of health span and life span, in this work, we thoroughly explore the effect of VA on C. elegans stress resistance and life span. We found that VA increases thermotolerance (19.4%), reduces protein aggregation (between 30% and 40%), improves motility, and extends life span by almost 50%, an extent hardly ever achieved with a natural compound. The increased thermotolerance induced by VA is independent of the insulin/insulin-like growth factor-1 signaling pathway but requires heat shock factor-1 and is associated with increased heat shock protein-4 (HSP-4) and hsp-16.2 expression. These results provide new insight into understanding the therapeutical properties of VA and warrant further investigation of VA as a novel geroprotector.


Assuntos
Proteínas de Caenorhabditis elegans , Longevidade , Animais , Humanos , Caenorhabditis elegans , Ácido Vanílico/farmacologia , Ácido Vanílico/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Senoterapia
14.
J Biotechnol ; 367: 42-52, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36965629

RESUMO

Microbial tolerance to lignocellulose-derived inhibitors, such as aromatic acids, is critical for the economical production of biofuels and biochemicals. Here, adaptive laboratory evolution was applied to improve the tolerance of Yarrowia lipolytica to a representative aromatic acid inhibitor vanillic acid. The transcriptome profiling of evolved strain suggested that the tolerance could be related to the up-regulation of RNA processing and multidrug transporting pathways. Further analysis by reverse engineering confirmed that the amplification of YALI0_F13475g coding for transcriptional coactivator and YALI0_E25201g coding for multidrug transporter conferred tolerance not only to vanillic acid but also towards ferulic acid, p-coumaric acid, p-hydroxybenzoic acid and syringic acid. These findings suggested that regulation of RNA processing and multidrug transporting pathways may be important for enhanced aromatic acid tolerance in Y. lipolytica. This study provides valuable genetic information for robust strain construction for lignocellulosic biorefinery.


Assuntos
Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Ácido Vanílico/farmacologia , Ácido Vanílico/metabolismo , Engenharia Metabólica
15.
Int J Biol Macromol ; 232: 123499, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36736522

RESUMO

Vanillic acid incorporated chitosan/poly(vinyl alcohol) active films were prepared by employing a cost-effective solvent casting technique. FTIR investigation validated the intermolecular interaction and formation of Schiff's base (C=N) between functional groups of vanillic acid, chitosan, and poly(vinyl alcohol). The addition of vanillic acid resulted in homogenous and dense morphology, as confirmed by SEM micrographs. The tensile strength of active films increased from 32 to 59 MPa as the amount of vanillic acid increased and the obtained values are more significant than reported polyethylene (2231 MPa) and polypropylene (31-38 MPa) films, widely utilized in food packaging. Active film's UV, water, and oxygen barrier properties exhibited excellent results with the incorporation of vanillic acid. Around 40 % of degradation commences within 15 days. Synergistic impact against S. aureus, E. coli, and C. albicans pathogens caused the expansion of the inhibition zone, evidenced by the excellent antimicrobial activity. The highest antioxidant capacity, 73.65 % of CPV-4 active film, proved that active films could prevent the spoilage of food from oxidation. Green chillies packaging was carried out to examine the potential of prepared active films as packaging material results in successfully sustaining carotenoid accumulation and prolonging the shelf life compared to conventional polyethylene (PE) packaging.


Assuntos
Anti-Infecciosos , Quitosana , Álcool de Polivinil/farmacologia , Antioxidantes/farmacologia , Quitosana/farmacologia , Ácido Vanílico/farmacologia , Staphylococcus aureus , Escherichia coli , Anti-Infecciosos/farmacologia , Embalagem de Alimentos/métodos , Polietilenos/farmacologia
16.
Curr Drug Discov Technol ; 20(3): e240223214005, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36825708

RESUMO

INTRODUCTION: Diabetes is the most common component of metabolic syndrome, including abdominal obesity, insulin resistance, hypertension, and dyslipoproteinemia. OBJECTIVE: This study aims to determine whether vanillic acid has antihyperlipidemic properties in diabetic hypertensive rats. METHODS: For this study healthy male albino Wister rats (180-220 gm) were selected. A 20-week highfat diet (HFD) was given to produce diabetic hypertension in Wister rats. Control and diabetic hypertensive rats were treated with vanillic acid. Vanillic acid effects on lipid profiles (cholesterol, triglycerides, phospholipids, free fatty acids, high-density lipoproteins (HDL)) and lipid metabolizing enzymes LPL, LCAT, and HMG CoA reductase studied by a conventional method. To understand the effect of vanillic acid control, experimental rat lipid and metabolic enzymes were studied and treated and controlled animal liver tissues were observed using the different histology staining agents. RESULTS: Vanillic acid caused considerable lipid profile reductions except for HDL and increased plasma HDL levels. After eight weeks of vanillic acid administration also boosts lipid marker enzyme activity (HMG CoA reductase, LPL, and LCAT). In addition, vanillic acid reduces the accumulation of collagen in liver tissues. CONCLUSION: These research studies suggest that vanillic acid has antihyperlipidemic effects in diabetic hypertensive rats fed an HFD.


Assuntos
Diabetes Mellitus , Hipertensão , Ratos , Masculino , Animais , Dieta Hiperlipídica/efeitos adversos , Ácido Vanílico/farmacologia , Ácido Vanílico/uso terapêutico , Ácido Vanílico/metabolismo , Ratos Wistar , Fígado , Hipolipemiantes/farmacologia , Hipolipemiantes/uso terapêutico , Colesterol/metabolismo , Hidroximetilglutaril-CoA Redutases/metabolismo , Hidroximetilglutaril-CoA Redutases/farmacologia , Diabetes Mellitus/metabolismo
17.
Chem Biol Interact ; 375: 110365, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36764371

RESUMO

Hyperinsulinemia (HI) induced insulin resistance (IR) and associated pathologies are the burning and unsolvable issues in diabetes treatment. The cellular, molecular and biochemical events associated with HI are not yet elucidated. Similarly, no focused research on designing therapeutic strategies with natural products for attenuation of HI are seen in literature. Keeping this in mind we planned the present study to evaluate the alterations occurring at ER/Ca2+ homeostasis/mitochondria associated endoplasmic reticulum membranes (MAMs) in HepG2 cells during HI and to evaluate the possible beneficial effect of vanillic acid (VA) to mitigate the complications. An in vitro model of HI was established by treating HepG2 cells with human insulin (1 µM) for 24 h. Then, ER stress, Ca2+ homeostasis, MAMs, IR and hepatic lipogenesis were studied at protein level. Various proteins critical to ER, Ca2+ homeostasis and MAMs such as p-IRE-1α, ATF6, p-PERK, p-eIF2α, CHOP, XBP1, p-CAMKII, InsP3R, SERCA, JNK, GRP78, VDAC, Cyp D, GRP75, MFN2, PTEN and mTORC were studied and found altered significantly causing ER stress, defect in Ca2+ movements and distortion of MAMs. The decreased expression of IRS2 and an unaltered expression of IRS1 confirmed the development of selective insulin resistance in hepatocytes during HI and this was the crucial factor for the progression of the hepatic lipid accumulation. We found simultaneous treatment of VA is beneficial up to a certain extent to protect HepG2 cells from the adverse effect of HI via its antioxidant, antilipogenic, mitochondrial and ER protection properties.


Assuntos
Cálcio , Resistência à Insulina , Humanos , Células Hep G2 , Cálcio/metabolismo , Ácido Vanílico/farmacologia , Lipogênese , Homeostase , Estresse do Retículo Endoplasmático
18.
Curr Drug Deliv ; 20(7): 927-942, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35864796

RESUMO

BACKGROUND: Numerous formulations have been utilized in the cosmetic and pharmaceutical industries to effectively deliver bioactive ingredients. METHODS: We selected a well-known liposomal formulation of bilayer lipid vesicles composed of ceramide NP. Ethosomes contain hydrophilic vanillic acid or lipophilic α-bisabolol, and their physicochemical properties were evaluated. Vanillic acid is encapsulated in the aqueous core while α-bisabolol is engaged with the lipid phase. The formulation was prepared by the high-pressure homogenization method at 800 bar for 5 min. The particle size, polydispersity index and zeta potential of the ethosome dispersion were analyzed by dynamic light scattering. In order to measure the skin absorption efficiency from artificial skin, an in vitro assay was performed using the Franz diffusion cell method for 24 hours. In addition, ultracentrifuges for encapsulation efficiency, dialysis membranes for active ingredient release, and low-temperature transmission electron microscopy (TEM) to evaluate the morphology of vesicles were utilized. RESULTS: The particle size of the ethosome containing ceramide NP and vanillic acid was in the range of 80 ~ 130 nm, whereas the particle size of the ethosome containing ceramide NP and α-bisabolol was 150 ~ 170 nm. In the vanillic acid-containing ethosome, increasing the amount of ceramide NP decreased the particle size, whereas the size of the α-bisabolol ethosome did not change. The stability of the prepared ethosome did not change significantly for 4 weeks at 25°C, 4°C, and 45°C. The skin absorption efficiency of ceramide NP and vanillic acid-containing ethosome was increased by about 15% compared to the control group, whereas the ethosome containing α-bisabolol and ceramide NP showed slightly higher skin absorption efficiency than the control group. In addition, encapsulation efficiency evaluation, active ingredient release measurement and cryo-TEM were taken. CONCLUSION AND PERSPECTIVE: Based on the results of these studies, we suggest that ethosome formulations containing ceramide NP can be widely used in the cosmetic industry together with other cosmetic formulations.


Assuntos
Pele , Ácido Vanílico , Ácido Vanílico/metabolismo , Ácido Vanílico/farmacologia , Pele/metabolismo , Absorção Cutânea , Lipossomos/metabolismo , Excipientes , Lipídeos/farmacologia , Tamanho da Partícula , Administração Cutânea
19.
Curr Med Chem ; 30(22): 2562-2576, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36045525

RESUMO

Cardiovascular diseases (CVD) are the primary cause of death globally. Activation of oxidative stress and inflammatory pathways are contributory to the development of CVD. Pharmacological activities of vanillic acid have been investigated suggesting that they may have therapeutic utility clinically. Given its phenolic nature, the anti-inflammatory and antioxidant properties of vanillic acid have been shown to exert potent inhibitory activity against Adenosine Monophosphate-Activated Protein Kinase (AMPK), Nuclear Factor Kappa B (NF- κB), the Janus kinase (JAK)/signal transducer and activator of transcription (STAT), Nod-like receptor family protein (NLRP), Toll-like receptors (TLRs), Mitogen-Activated Signaling Proteins (MAPK) and Mammalian Target of Rapamycin (mTOR) signaling pathways. Vanillic acid has been shown to block pro-inflammatory cytokines and suppress inflammatory cascades. The inhibitory impact of vanillic acid on reactive oxygen species (ROS) and nitric oxygen synthase (iNOS) expression has also been demonstrated. Vanillic acid reduces oxidative-related markers such as superoxide dismutase (SOD), glutathione (GSH), Heme Oxygenase 1 (HO-1), and glutathione peroxidase (GSH-Px). Here, we review the cardioprotective effects and mechanisms of action of vanillic acid in CVD. Current potential applications of vanillic acid in CVD are discussed concerning preclinical and clinical studies.


Assuntos
Doenças Cardiovasculares , Ácido Vanílico , Humanos , Ácido Vanílico/farmacologia , Ácido Vanílico/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Transdução de Sinais , NF-kappa B/metabolismo , Anti-Inflamatórios/farmacologia , Estresse Oxidativo , Fator 2 Relacionado a NF-E2/metabolismo
20.
Clin Exp Pharmacol Physiol ; 50(3): 193-204, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36370144

RESUMO

Nowadays, cardiovascular diseases (CVDs) are a global threat to public health, accounting for almost one-third of all deaths worldwide. One of the key mechanistic pathways contributing to the development of CVDs, including cardiotoxicity (CTX) and myocardial ischaemia-reperfusion injury (MIRI) is oxidative stress (OS). Increased generation of reactive oxygen species (ROS) is closely associated with decreased antioxidant capacity and mitochondrial dysfunction. Currently, despite the availability of modern pharmaceuticals, dietary-derived antioxidants are becoming more popular in developed societies to delay the progression of CVDs. One of the antioxidants derived from herbs, fruits, whole grains, juices, beers, and wines is vanillic acid (VA), which, as a phenolic compound, possesses different therapeutic properties, including cardioprotective. Based on experimental evidence, VA improves mitochondrial function as a result of the reduction in ROS production, aggravates antioxidative status, scavenges free radicals, and reduces levels of lipid peroxidation, thereby decreasing cardiac dysfunction, in particular CTX and MIRI. Considering the role of OS in the pathophysiology of CVDs, the purpose of this study is to comprehensively address recent evidence on the antioxidant importance of VA in the cardiovascular system.


Assuntos
Antioxidantes , Doenças Cardiovasculares , Humanos , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Vanílico/farmacologia , Ácido Vanílico/uso terapêutico , Estresse Oxidativo , Radicais Livres , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...